International Journal of Computer Science A International Academy of Science,

and Engineering (IJCSE) <
ISSN(P): 2278-9960; ISSN(E): 2278-9979 Engineering and Technology

Vol. 6, Issue 1, Dec - Jan 2017; 1-34 IASET Connecting Rescarchers; Nurturing Innovations
© IASET

FOCUSED WEB CRAWLER DEVELOPMENT CHALLENGES: ECCRAWL ER

FURKAN GOZUKARA & SELMA AY SE OZEL
Department of Computer Engineering, Faculty of Begring and Architecture,

Cukurova University, Balcali, Saricam, Adana, Tyrke

ABSTRACT

Nowadays, the importance of focused web crawlensare than any time before. As the web has becoassive
and spam my, it is now essential to have focusedl evawlers that can crawl only the targeted websited obtain the
necessary information. Instead of relying on theilable public general web crawlers, today, devielga focused web
crawler for the targeted web pages is preferreth¢oease success of information retrieval. In fraper, the challenges
encountered and the proposed solutions to attehgstet problems are presented, while developing myinak hand-
crafted, full scale, robust and effective focusedbwcrawler for E-commerce sites, named as EcCrawlbich is
developed in C# programming language by using .MEBTframework and MS-SQL Server 2014 database neamaigt
system. Most of the crawling challenges have bdsoudsed before in the literature, however in fraper, practical
implementation and .NET framework based solutidre includes thread pool initialization, exceptioandling, task
parallelism, HTTP compression, duplicate web paggolution, number of concurrent connections to shme host,
database communication, resource sharing betweeads, etc. are presented and the proposed sawienempirically
evaluated. The experimental evaluation shows thplying the proposed solutions improve EcCrawlerawling speed
over 400% and Ul responsiveness over 100%. Theopagpsolutions may be applicable to any softwaaeithdeveloped

by using .NET framework.
KEYWORDS: NET Framework, Performance Tuning, Application Blepment, Multithreading, Web Crawling

INTRODUCTION

Web crawlers are software systems that are usedllect information from websites. Their main tasKetching
websites, processing fetched source code and grfyatew target hyperlinks to crawl. General webwders start with
root URLS and continue until crawling all of the hyperlinksat they can find. However, this task is tedions aot
doable for small or even average scale applicationgy a fewlarge-scalecommercial general seargines (e.g. Google,
Bing, Yahoo, Yandex, and so on)can cope with thelehges and the massiveness of the entire welkkesyl their index
fresh. They need to use many different sources beigpg a member of ICANNand getting the list of newly registered
domains, and so on) to discover the new links a®plkecrawling their existing URLSs just tomainthi@shness. Because

of these very reasons, developing focused web erawre much more feasible and commonly practiced.

Focused web crawlers are specialized versions mérgeéweb crawlers that crawl only certain topicscertain

websites [1]. Even though they are much smallelesitean general web crawlers, still many challenged tough tasks

! URL is an acronym for Uniform Resource Locator dsda reference (an address) to a resource onrieenét,
http://docs.oracle.com/javase/tutorial/networkimtgiaefinition.html
2 The Internet Corporation for Assigned Names anthbiers, https://www.icann.org

www.iaset.us edit@iaset.us

2 Furkan Goziikara & Selma Ayse Ozel

await the developers who are going to build focuset crawlers [2]. In this paper.it is aimed torghexperiences that are
gainedfrom the development of a full-scale, objedented, robust, and fast focused web crawler tisas the latest
technologies with multithreaded implementation had a very high success rate with hand-crafted riillee development
is made in Visual Cirogramming language based on the Wp®gramming model by using .NET 2 amework and

x64 platform. MS-SQL Server 20%4 used for database management. For programmsugVstudio 2013IDE is used.
The challenges for which possible solutions arggsed in this study are listed as below:
» Providing communication between user interface, (itee main thread) and background worker threads,
* Maintenance of responsive user interfaces whilaingithousands of threads,
» Collaboration and resource sharing between difteterads,
» Unexpected error handling,
e Maintenance of URL repository,
» Robust web page fetching,
» Keeping logs for errors,
» Providing optimized database access for performanpeovement,
» Being able to process erroneous HTML source,
» Handling different HTML source page structuresdata extraction from different websites,
» Compressing HTML source files to save disk space,
e Saving bandwidthby HTTP compression,
« Management of the number of threads that run sanathusly.

Since focused webcrawlers are a specialized verdigieneral web crawlers, many of the above chg#erare
also the concern of general web crawlers as welkkrdfore, we believe that this study can also belperal web crawler

developers too.

The rest of the paper is organized as follows: hie hext section, the related work for the web oceawl
development is discussed. In the third section,atohitecture of the proposed focused web craveled the possible
solutions for the problems encountered during tin@lémentation of our crawler are presented. Thetliosection
discusses the experimental results which show tfeetiveness of the proposed methods, and finallg, last section

concludes the study.

3 Visual C# Resources, https://msdn.microsoft.coru@studio/hh341490

* Windows Presentation Foundation, https://msdn @sioit.com/en-us/library/ms754130

> NET Framework and .NET SDK Downloads, https://msaticrosoft.com/en-us/vstudio/aa496123.aspx
® SQL Server 2014 | Microsoft, http://www.microsoétm/en-us/server-cloud/products/sql-server/detmix
" Visual Studio - Microsoft Developer Tools, httpsvw.visualstudio.com

Impact Factor (JCC): 4.6723 NAAS Ratj 1.89

Focused Web Crawler Development Challenges: Eccraed 3

RELATED WORK

In the literature, the majority of the related weire about how to design a general web crawléi [3-how to
decide more relevant pages for a focused web crawleeduce resource requirements such as spaoelwizih,
computation power, etc. in the crawling task [7-T11d our knowledge, there is no study that expléireschallenges and
the possible solutions for developing a (focusedpwrawler from developers’ perspective by prowdimplementation
detail and being up-to-date. Additionally, the wieds become so enormous and spam my that most giréveously
proposed approaches may fail today. Gottigplays statistical data about spam page son ¢heand the domains that are
penalized by Google manually. These statisticsrigleshow an exponential increase of spam. Nowadagnmers are
able to generate more sense making spun cdrignising machine learning algorithms. They are alsle to build highly
related link structures. Thus, depending solelyrufiok relations, semantic relevancy or contentlysia can lead to a
failure. And for other than the multi-million budgkaving companies, it is not very possible to stt@ entire web to
determine the authoritativeness of websites oriotaormous golden data to weigh them accuratady.tke reasons
outlined previously, if there is a need for a weawder that requires high success rate, we profigtedeveloping a task

oriented, new and hand-crafted focused crawler Ineathe best solution.

Nishaet al. [7] have proposed an approach to improve the sefeof seed URLs by using user interest ontology.
Uzuret al.[8] have used decision tree learrlitig automatically determine useful parts of the afes. Different blocks
of the web pages are identified by using HTML tagsorder to improve the efficiency of web crawliragd data
extraction. Dahiwalgt al. [9] have proposed a crawler that utilizes link ar@htent-based evaluation to improve the
precision of focused crawling. Yoharesl. [10] have proposed a genetic algorithm by usinghogology that employs
adaptive and heuristic methods to improve therarley of the crawled pages. Papavassitibal. [11] have developed a
system for harvesting topic specific data from theb for both monolingual and bilingual pagesetlal. [12] have
proposed a framework that uses divide and conduatiegy by using double step page classifier, &éa&luation, when to
stop crawling strategy, etc. to enhance the focesadling success. Kumat al. [13]have developed an algorithm that is
based on term frequency-inverse document frequérfe§iDF) which improves the precision of topic tatgd crawling
in consecutive crawling phases. Létial. [14] have proposed a framework that calculatesdistance of the newly
discovered URLs from the topic by using Maximumépy Markov Model and Linearchain Conditional Ramd&ield
probabilistic models by exploiting multiple featarsuch as anchor text, etc. Betlal. [15] have proposed the Dynamic
Semantic Relevance system, which uses terms aks fnimprove crawling efficiency and precision fotused web
crawlers. Maimunalet al. [16] have proposed a system that uses relatiomgela parent, sibling, target, child and spouse
(which links to child) documents to improve precisiand recall of focused web crawling. laual. [17] have developed
an approach that uses Semantic Similarity Vect@ac8model by utilizing TF*IDF and semantic simitéas to calculate
relevancy of the uncrawled URLs. Such related wéigtssome efficient crawling strategies and shbat tsystem scan be
extended, however, our aim in this study is diffitrén this research, our aim is to start crawlirgm a static root web
site, and crawl all the pages except particulasdeey., blocked by robots prototiabr ignored by manually crafted rules,

etc.) from the root domain with high success rdie.achieve this goal, we propose practical impleateon based

8 Fighting Spam — Inside Search — Google, https:iivgeogle.com/insidesearch/howsearchworks/fightipars.htm|
°Article spinning — Wikipedia, https://en.wikipediag/wiki/Article_spinning

“Decision tree learning — Wikipedia, https://en.\idlia.org/wiki/Decision_tree_learning

MA Standard for Robot Exclusion - Robotstxt, httgwiv.robotstxt.org/orig.html

www.iaset.us edit@iaset.us

4 Furkan Goziikara & Selma Ayse Ozel

solution methods which involve fine tuning of soMET framework based parameters, and we show tiferpence of

our proposed solutions experimentally.

Boldiet al.[3] have proposed a scalable web crawler calledlzEsCrawler which is similar to our study. In [3],
every task is tried to be decentralized as muclpassible. The system is implemented by using Jawgramming
language, however, details about how to improveyammming language related performance issues wardiscussed.
Also, UbiCrawler does not guarantee 100%preventiom duplicate crawling, and the system may hawblems to
achieve continuous crawling when it is restartedtaiotal application crash. Also, how to distridarawling hosts to the
agents were not explained in detail. Due to thgstesn design, even distribution of the workload aghagents is difficult
to achieve. The number of the URLs among the agertssumed to be evenly distributed during thechégvls, however,
our experiments indicate that this assumption natybe valid every time. Also, due to the deceredlbn of the agents,
they cannot communicate with the each other tosacttee disk, and this may cause a restriction foub@n the number of
active agents to prevent hard drive from speedttting. In EcCrawler, on the other hand, every dgesncentrally
controlled, thereforedistribution of the workloami@ng agents is highly achieved and the crashdseaaiplication restarts
do not cause any problem for continuous crawlingCiawler’'s design, capability, features, and progréng language

that is used are highly different from UbiCrawler.

Gomes and Silva [4] have proposed a generalizedorebler and discussed some of the challengestiheg
encountered. Java programming language is usednfgementing the crawler but no programming languaglated
problems, their solutions, and optimizations aretio@ed. Their main focus is more about explainimgblems that are

encountered while crawling the web and the stractditheir crawler.

Heydon and Najork [5] have proposed a highly-sdalafpeneral web crawler system and discussed the
fundamental problems of a general web crawler dgveent. Their proposed system has been developethva
programming language. However, implementation &etai solve problems encountered during the cragkesign were
not provided.Shkapenyuk and Suel [6] have preseatsgistem architecture of a distributed web crawhet runs on
multiple connected servers. The primary concerthefstudy is /0O and network efficiency, and sanos for performance
bottlenecks and how to obtain high performance whelk crawling are discussed. C++ and Python prognang
languages are used to develop the crawler. Howaaptementation details and solutions for codinigtexl problems and
tunings are not discussed. Edwaetla.[18] have developed a fully distributed general wedwler model which mainly
focuses on an efficient incremental crawling sggteédlston and Najork [19] have made an extensiwéew of the web
crawling literature. They have covered the majooityhe web crawling topics such as crawler archibe, crawl ordering,

avoiding undesirable content, and so on.

Our study is different from the previous studieatthave been made in this area such that we preddece
codes to solve challenging problems that may b@wmtered during crawler implementation. Additiogalive provide

extensive empirical performance analysis for theppsed solutions.
THE PROPOSED CRAWLER SYSTEM

This section explains the general architecturehefEcCrawler as well as the challenges encountiuddg the

development of the EcCrawler and possible soluttorthese problems.

Impact Factor (JCC): 4.6723 NAAS Ratj 1.89

Focused Web Crawler Development Challenges: Eccraed 5

The Architecture of EcCrawler

EcCrawler starts by initializing public static vales, functions, and classes. In the second staaje, tasks that
are URL Handler, Crawler, Pages Processor, andaGBtatistics Handler are started independentiyftbe main thread
and thus obtain better overall application perfaroeaand the user interface (Ul) responsiveie$fie Ul thread and the
main thread are the same thread in this study dmsl is the default setup of WPF(Windows Presentatio
Foundation)applications in .NET framework. Figurghdws the workflow of EcCrawler. In the followinglsections,

implementation details of the main tasks such atsalization, main thread, URL handler, URL crawletatabase

communication, pages processor, etc. are presented.

Initialization

Initialization process sets up the global variapfeanages continuously running TaSkad functions; performs

A 4

URL Handler Get

URLs

A 4

Start New
Task

Check URL
Repository Count

Greater
than Gre
Threshold

Less than Threshold

“--Crawling-------- >

Threshold

(Initialize Variables, Functions and Classes >—

l

Crawler

I

Start New
Task

Check Number of
Running Tasks

Less
than
Threshold

Task
Termination

Load From Database

Process Fetched Result
and Save

A

DBMS

A 4

A

Pages Processor

Global Statistics
Handler

l

A 4

Start New
Task

Update User
Interface

Check Number of
Running Tasks

Greater
than
Threshold

Task
Termination

Less
than

Thresholdﬁ

Get Waiting To
Be Processed
Documents Information

Fetch Waiting To
Be Processed
Documents and
Process

Figure 1: Flowchart of EcCrawer

thread pool initialization; controls global unhagdilexception handler; and runs close handlers.

URL Handler, Crawler, Pages Processor, and Glotatis8cs handler are Tasks that run continuoushese

Tasks continuously start new Tasks in a pre det@ditime interval, and they continue to operatel waptplication

termination.

2Chapter 6 — Using Multiple Threads, https://msdenwsoft.com/en-us/library/ff649143.aspx

*Task Class. Represents an asynchronous operati@mroddft Developer Network, https://msdn.microsmim/en-

us/library/system.threading.tasks.task

www.iaset.us

edit@iaset.us

6 Furkan Goziikara & Selma Ayse Ozel

Thread Pool Initialization

.NET framework determines the number of threads ihapawned automatically according to the appbca
demand. However, this may yieldpoor results if fudtware is running on apowerful hard ware when hlaedware
demand is high. To be able to start a pre-detemnmenber of threads and utilize the system ressusetter, we propose

to set the thread pool count manually before spagvtiie threads as shown in Code Snifpet

ThreadPool .SetMaxThreads(100000, 100000);
ThreadPool .SetMinThreads(100000, 100000);

Code Snippet 1: How to initialize the Thread Pool

SetMax Threads sets the maximum number of threadthé thread pool, and if there is more demand thae
pre-determined maximum count, the demands are duanté the thread pool becomes available. SetMire@ds sets the
minimum number of threads for the thread pool e&witching an algorithm to manage the thread gadboth functions
that are shown in Code Snippkthe first parameter is the number of worker thsegdthe thread pool, and the second
parameter is the number of asynchronous I/O thrizatie thread pool. Worker threads are used ferrittive works done
in the thread pool while 1/0O threads are more likiel wait for an external operation to completetsas a data receive
from the network. We propose to set both SetMaxedtis and SetMin Threads to anequal high numbemtairo

maximum available resources for the thread managesystem.
Exception Handling

Setting up proper exception handling enables dpeetoto discover not properly handled errors durtimeg
program run. While our software is running in al iG&se scenario, we propose always to setup gtmaption handling
to prevent from accidental application crashes.édwger, errors are need to be properly logged fluréuanalyses. Close
handlers are also necessary to ensure that noidédat when the application is terminated by rmgna command or
clicking the close button at the right top of thé WMoreover, close handlers can be set to run werunexpected
application termination happens for preventing pogsible data loss. Code Snipgshows how to setup global unhandled

exception handling and application of close hardler

AppDomain currentDomain = AppDomain .CurrentDomain; /Iset the event domain

Application .Current.DispatcherUnhandledException += new

/setup crashing event handler for sub threads
DispatcherUnhandledExceptionEventHandler (

CloseCrashHandlers .AppDispatcherUnhandledException);

currentDomain.UnhandledException += new
/setup crashing event handler for main thread

UnhandledExceptionEventHandler (CloseCrashHandlers .CrashCloseHandler);
Closing += new CancelEventHandler (CloseCrashHandlers .CloseHander);

/setup closing event handler

Code Snippet2: How to Setup Global Unhandled Exception Handler ad Close Handlers

Impact Factor (JCC): 4.6723 NAAS Ratj 1.89

Focused Web Crawler Development Challenges: Eccraed 7

Ul Independent Tasks

Executing every task independently from the mamedll can ensure application responsiveness, benanseof
the tasks would block the main thread. The best teagchieve this is to start a new independent Taskvery process
that application is going to do. We propose thaty ddl updates should run in the main thread by gspolling
methodology. Thus, Task. Factory method as showdoitle SnippeBto spawn new threads can be used. This method is
one of the most optimal ways of doing multi-threegin C# WPF applications when using .NET 4.5 beealiasks are
more light weighted when they are compared to Tds'éaAdditionally, using Task Scheduler. Defaultpar&enenill

ensure that all of the spawned Tasks will be inddpat of themain thread.

Task .Factory.StartNew(() =>

StartTasks();
}, CancellationToken .None, TaskCreationOptions .LongRunning,
TaskScheduler .Default);

Code Snippet3: How to Start New Threads Independently from the Main Thread
Timer-Based Polling Methodology

We propose that polling methodology based systesigdeprovides both performance and robustnessingoll
based system can be achieved by starting all ofafies as different threads from the main threathduhe initialization
phase, and doing timer-based function calls inetesld threads as shown in Code Snippefimer method also starts
another Task and even if this spawned Task is texted unexpectedly, the method continues to spasw Tasks.
Therefore, unexpected errors do not cause thecapiplh gets terminated, and unexpectedly terminitetks are properly

eliminated.

private static Timer _timer;
private static int howManySeconds = 1;

public static void func_StartCrawlingWaitingUrls()

{
_timer = new Timer (wrapper_func_CheckWaitingUrls, null ,
PublicSettings .irTimers_Delayed_Start_MiliSeconds,
howManySeconds * 1000);
}
Code Snippet 4: How to Start Timer-Based Polling Factions
Main Thread

Main thread is important for developers or clielatsnanage the crawling process. Displaying vargiasistics in
the Ul helps us greatly during the developmentefdrawler. Some developers may find that it isessiential for a web
crawler to have a fancy Ul. However, our proposgstesn can be applied to all kinds of software ttegfuire highly
responsive Ul. Running all of the tasks separatenfthe main thread can ensureUl responsivenessetawupdating the
screen still requires accessing the Ul thread. Hmwstart polling threads from the main thread agfdesh the interface
properly without blocking the Ul thread for a petiof time are shown in Code Snippet 5. The _tiniged ensures Ul is
updated with an interval and the Dispatcher evanthis method ensures Ul is not blocked. This madhagy can

minimize the risk of Ul blockage.

“Task Parallelism (Task Parallel Library), httpsgtin.microsoft.com/en-us/library/dd537609(v=vs.14€)x
Timer Class — MSDN, https://msdn.microsoft.com/sflirary/system.timers.timer(v=vs.110).aspx

www.iaset.us edit@iaset.us

8 Furkan Goziikara & Selma Ayse Ozel

In EcCrawler, a global static class is designedttoe the events (e.g. URLs of the latest crawkegep, number
of page-processing tasks that are running, how roeawling errors that happened, and so on). Potlingads constantly
check this global static class and update the irderface without blocking the Ul thread. Howevewnen if this
methodology is followed, Ul freeze can still happerder certain situations. We noticed that thidbfmm happens due to
the Garbage Collector (GC) ofthe .NET framework.aiWlthe GC runs in the default mode which is wotimta if there
are too many objects being constructed and destfuntthe running software, it may pause all of ttir@ads, including
the main thread for along time, and thus causeréfizie, and software performance degrades. Durandekielopment of
the EcCrawler, figuring out and solving this prahldas taken some time. A possible solutiontoperéore degradation
issue is to set GC mode to server which does nadgall of the threads and support multi-threadetbape collection.
This setting is especially useful when the softwiareinning on a system that has multi-core CPWeC8nippet 6shows
how to set GC mode. After this mode change, acogrth our observations, even if thousands of Tagk at the same
time, Ul responsiveness is not affected as lontheae are sufficient system resources to updat&thAlso, changing the

GC mode improves overall performance significarflyperiments about this modification are presemtesgction 0.

private static System.Threading. Timer _timer;
| timer= new Timer (updateGlobalStatistics, null

PublicSettings JirTimers_Delayed_Start_MiliSeconds,
PublicSettings Jir_RefreshUl_MS); //Start polling thread

object updateLock = new object ();
private void updateGlobalStatistics(object sender)

if (Monitor.TryEnter(updateLock))

{
try
{ - |
Application .Current.Dispatcher.Invoke(new Action (() =>
/IGet data from global static cla ss and update the interface
N
}
finally
UiRefreshed();
Monitor.Exit(updateLock);
}
}

}

Code Snippet 5: How to Refresh the User Interface Whout Causing Ul Freeze

<configuration >
< runtime >

< gcAllowVeryLargeObjects enabled ="true "/>
<l—f the application uses over 2GB objects ->
< gcServer enabled ="true "/><!-- Set garbage collector mode -->

</ runtime >
</ configuration >

Code Snippet 6: How to Set Garbage Collector Mode
URL Handler

Impact Factor (JCC): 4.6723 NAAS Ratj 1.89

Focused Web Crawler Development Challenges: Eccraed 9

One of the main components of a web crawler is & b&hdling system [20]. The main job of this systisnto
gueue which URLs will be crawled next. Using MS-S®é&rver makes easy to build the URL handler sysaech

itprovides some benefits which are explained inktblew paragraphs.
Several key aspects are observed when designiiRl.ehéndler system:

e Both the original URL sand their normalized versiathat can be obtained by applying some methods lik

SHAZ256, should be stored since some websites withkoase-sensitive URLS.

* Newly discovered URLs should be saved to the haklas batches in order to obtain better perforrmamt¢erms
of disk access time. Both versions of the URLs &hdoe kept in a properly designed data structuich sas
hashsets or dictionaries until they are writteditk. Not-properly designed structures can redwéopmance of

the crawler.

« Since different threads concurrently access taltiia structure that store URLS, using private @y objects to
lock the data structure can ensure thread safetydata consistency. An example of such case caseée in

Appendix Code Snippet 7.

* URLs that are failed to be crawled for a partictiare should be disabled to prevent crawler tragginthe same
URLs. Disabling the failed URLs must be done batlthie database and in the URL repository of thenso€. In
EcCrawler, we have set a variable which is callededry count to 3 to solve this problem. In owavder, after
three consecutive failures, the URL is disabledZérhours. We did not conduct extensive experimentind

optimal parameters for these settings. Therefqgtmal value for retry count can be determinedudsre work.

» Another vital point is to provide load balance betn the different E-commerce websites. Size andaigpof
each site are distinct from each other, so the murabthe crawling tasks for each website shouldifferent and
this value should be determined separately for asgtehto ensure both politeness and maximum peeoo® of
the crawling task. One of the major mistakes thatenmade during the early development stage of &el@r
was the nonexistence of any load balancing systetwden the E-commerce websites. The URL handler was
fetching the next batch of the crawling URLs frohe tdatabase by the earliest discovery date. Simpiyg
breadth-first search [21] which is one of the viérst proposed approaches [22] in the literatuseised that a few
huge sized E-commerce sites get all of the avalabhwling agents and thus decrease the overalicappn
performance and violate the politeness rule oftctiagvling. One methodology proposed to solve thabfem is to
use the completion time of the previous crawlingsge [21]. By considering the crawling speed afheaebsite
individually, the number of agents for each websitel the pause period for each consequent crawhngbe
individually determined. This approach requiresedmining threshold values for these parameterss ftéthod
favors very fast websites, and this may resulewesal enormous and very fast websites to get #jerty of the
available agents. One of the possible ways of Bgl¥his problem is to assign a unique static nunibethe
maximum number of fetching agents at a time forheace of the E-commerce sites. When retrieving next
crawling URLs from the database, a specified nunolbdinks for each E-commerce site is retrievedoading to
the pre-determined thresholds. The URL handler nalst keep track of the list of URLs that are cexvl
currently to maximize the number ofcrawling ageiotseach website. When the crawler asks the URIdleario

send the next batch of the queued links, a preqaited number of URLs need to be provided for esebsite

www.iaset.us edit@iaset.us

10 Furkan Goziikara & Selma Ayse Ozel

to accomplish load balancing. We defined diffeneminber of links to be crawled for each website ediog to

our empirical analysis of early crawling resultdditionally, public search engines can be usedetgrchine
these values. All the main search engines (e.g.glepoYahoo, Bing, Yandex, and so on) support
“site:mysite.com” queries which provide the number of estimatedilteseach of which can be considered as a
different page. Although these results are not @egurate and reliable (e.g. they don't displaycestatistics, or
some sites could have duplicate pages becausecofréct URL structures, and so on), they can beal use
roughly estimate the size of the crawled websitesdetermine the number of crawling agents propoatiy for

each site (e.qg., if there are 100 available agatastime, distribute them according to these gi#ees).

private static readonly object _lockObject = new object ();
/lobject to use for locking
public static void funcitonName(object inPut)
{
lock (_lockObject)
/llock the object so non-thread safe objects are now thread-safe
{
/llexecute necessary procedures on non-thread safe objects such
as dictionaries
}
}

Code Snippet7: An Example for Usage of Data Structures and Lockig to Ensure Thread Safety and Data
Consistency

» After load balancing strategy is decided, the darstrises which links should be crawled next. $a&véifferent
techniques have been proposed in the literatudetermine which links should be the next. Thesehoux can
be summarized as follows:(a) First discovered iist fcrawled [21];(b) Giving priority by using theount of
incoming hyperlinks [23] to crawl more relevant padirst; This technique is now obsolete due tortfassive
amount of link spamming; (c) Giving priority by serpage scoring such as Page Rank [23-28]. Howmast of
the advanced page ranking algorithms may perforwripagainst current web pages because of the newly
developed advanced search ranking manipulationnigegs® (e.g., link schemes, sneaky redirects, affiliate
programs, paid links, and so on). Google uses @0ér different factor$ to determine the Page Rank of web
pages today to fight against these techniques afided high-quality search results. Since in ourrkyahe
websites that are going to be crawled are pre-héed, and there is a finite number of pages; wendt use any
page ranking algorithm to give priority to pagesiashhare crawled first. Instead of some page ranking
mechanism, we have employed manually constructestifig rules to prevent crawling unnecessary pages
example for the E-commerce site VatanBilgisayath& newly discovered URLs contaifwébapp/”or “search
Query=" strings, they are discarded. Because, a URL, lwhantain these two strings, cannot be a categage p
or a product page. For our task, we only need &wicand process the category pages which list tbdyzt
pages, and the product pages themselves. Currandgmain expert analyses the discovered URLs anities
which strings are used for filtering the web pag&fenever structures of the product and categoggpare

changed, we need to update our rules which camrdiete the product and category pages. Therefoteyratic

%Quiallity guidelines — Google, https://support.goamen/webmasters/topic/6001971
" Google Inside Search, Algorithms, https://www.geocpm/insidesearch/howsearchworks/algorithms.html

Impact Factor (JCC): 4.6723 NAAS Ratj 1.89

Focused Web Crawler Development Challenges: Eccraed 11

determination of product pages and category pagyeséded and this can be done by employing a fitais#is
our main aim in this study is to show .NET framekvamplementation based solutions for the problems

encountered, we plan to include a classifier toavawler as a future work.
URL Crawler

URL crawler (i.e., page fetching) is another coestmf a web crawler [19]. Tasks of a URL crawlancbhe
summarized as follows: crawling the given link, ragting the hyperlinks from the crawled page, agtdrning both the
extracted links and the source code of the crapéage. In the EcCrawler, only product pages aregqased so the crawler
checks whether the page is a product page or fibtisinot a product page, the source code issaped. Also, all of the
extracted URLs are processed by applying technidjkes‘replace words”, “ignore words”, “trimming”not allowed
types” (e.g., PNG, JPG, PDF, and so on), “disalibwg robots protocol”, and so on. Some of thesértiggies are
manually defined after inspection of the targetedoBimerce websites. Eliminating unnecessary pages, duplicate
pages, irrelevant pages, etc.) from processing smakbuge impact on the overall performance of érgwlWhen the
crawler tasks complete their operation, they rethmdiscovered URLs and the source of the crapbgk to the URL
handler so that they can be saved in the datahasens and the discovered new URLs can be addddetarawling

gueue.

The performance of the web crawlers is highly deleenon the used settings. However, in most caseseth
settings are not mentioned in the related litemaferg.,[6, 18, 19]). To possibly obtain betterfpenance, we adviseusing
Http Web Request class in .NET framework becausedlss allows tuning of many different paramet&r®m these
parameters HeadéfsEncoding® of the Stream Reader, KeepAlive and the Responisare necessary. Headers are used
to enable HTTP compressfrwhen fetching pages from the server and thus faignily reduce the network usage.
HTTP compression is achieved by adding §zind deflat& parameters to the headers by using “Accept-Engddiay
as shown in Code Snipp8tEncoding of the stream is essential for parsindhef fetched source code properly.lt is
provided to the Stream Reatféunction, and it determines the character encodihthe fetched source cddeKeep
alive® feature may significantly affect the overall netlvperformance according to the crawling scenatiben the Keep
alive feature is enabled, it uses a persistent Hddrhectiof® to the crawled server for multiple HTTP requesttéad of
establishing a new connection session when ea@hdipage is fetched. The only disadvantage of ladiee is, it causes
extra memory usage (especially for the web sethenefore, when there is multiple access to theesethe Keep alive

feature should be enabled.

Also, there will be many pages that redirect totheopage. Therefore,it is important for acrawtehandle the
redirected URLs for achieving proper crawling ameventing duplicate crawling.HttpWebRequestclassi&fault allows

automatic redirections. So if any redirection haygpduring the HTTP request to the server, it isdheth by Http Web

18 Headers, https://msdn.microsoft.com/en-us/libsystem.net.httpwebrequest.headers(v=vs.110).aspx
®Encoding Class — MSDN, https://msdn.microsoft.camis/library/system.text.encoding(v=vs.110).aspx
HTTP compression — Wikipedia, https://en.wikipedig/wiki/HTTP_compression

2 Gzip — Wikipedia, https://en.wikipedia.org/wiki/(pz

ZDEFLATE — Wikipedia, https://en.wikipedia.org/wiKIEFLATE

% streamReader — MSDN, https://msdn.microsoft.corihibrary/system.io.streamreader(v=vs.110).aspx
#Character encoding — Wikipedia, https://en.wikipedig/wiki/Character_encoding

KeepAlive — MSDN, https://msdn.microsoft.com/libyfsystem.net.httpwebrequest.keepalive(v=vs.110}.asp
HTTP persistent connection — Wikipedia, https:ieékipedia.org/wiki/HTTP_persistent_connection

www.iaset.us edit@iaset.us

12 Furkan Goziikara & Selma Ayse Ozel

Request class automatically, and the final crawd&i can be obtained from Response Uri .Absolutepdrameter of the

Web Response class.

All settings can be done as shown in Code Snippéis, EcCrawler shows respect to the canonical$JR
system of Google. Canonical URLs show absolutesliok pages to prevent duplicate pafel the source code has
canonical URL parameter and the URL of the fetgbagle does not match with the canonical URL, theniRL handler
only returns the canonical URL of the fetched pdfhis returned canonical URL has been seen bdfgrthe crawler,
the fetched URL is marked asduplicate by canonical”. For example, assume that the discovered URL is
“http://lwww.buroteknik.com/Cross-883-3-Atx-Bazaliy8h-Versatil_151274.html” while the canonical URL the page
source is “http://www.buroteknik.com/en-ucuz-cr@&3-3-atx-bazalt-sc4b0yah-versatc4bOl-fiyati-

ozellikleri_151274.html”. As can be seen, the URIs different however they are the same pages.

One other critical problem is infinite-URLs gendéoat Some websites use bad link structure whichiltgsn
generating infinite amount of URLSs. Infinite-URL&meration happens by adding more directory levehéoURLS. The
following URL can be given as an example of suchkecattp://www.mysite.com/toys/computers/toys/cotepa To
possibly overcome this problem, a maximum directbepth for each website can be set manually aftloraain expert
inspects URL structure of each website. Howevds, iay cause false rejects if the URL itself camgal/” character
instead of for directory level. On the other hartts, gainsthat have been obtained by setting adinaxtory depth value
are much greater than these very rare false rejdwta developing EcCrawler. As many E-commerce itebgenerate an

infinite number of links they cause crawling of te@ny duplicate pages.

HttpWebRequest request = (HttpwebRequest) WebRequest .Create(sruUrl);

/init request

request.KeepAlive = true ; //keep connection alive

request. Accept =
“text/html,application/xhtml+xml,application/xml;q= 0.9,*/*;g=0.8"
//set request headers

MWebHeaderCollection myWebHeaderCollection = request.Headers;

myWebHeaderCollection.Add(“"Accept-Language"” , "en-gb,en;q=0.5")

myWebHeaderCollection.Add("Accept-Encoding” , "gzip, deflate” H

/set accepting http compression

request. AutomaticDecompression = DecompressionMethods .Deflate |
DecompressionMethods .GZip; //enable automatic decompression

using (WebResponse response = request.GetResponse()) //start response

using (Stream strumien = response.GetResponseStream())

Encoding myEncoding; string srContentType =
if (response.ContentType != null

srContentType = response.ContentType;
if (srContentType.Contains()
{

srContentType = srContentType.Split (G)[1];
srContentType = srContentType.Replace(“"charset=" D K
srContentType = //try to auto get encoding type
PublicStaticFunctions .func__Process_Html_Input(srContentType);
}
try { myEncoding = Encoding .GetEncoding(srContentType); }
catch { myEncoding = irCustomEncoding == 0 ? Encoding .UTF8 :

Encoding .GetEncoding(irCustomEncoding); }
//set recognized encoding
using (StreamReader sr = new StreamReader (strumien, myEncoding))

srBody = sr.ReadToENd(); //read the response
srFinalUrl =
PublicStaticFunctions .Return_Absolute_ Url(
response.ResponseUri.AbsoluteUri. ToString(),
response.ResponseUri.AbsoluteUri. ToString());

Code Snippet 8: A Shortened Version of EcCrawler'§etching Function

In today's web,there is a vast amount of web pagesrawl and the number of web pages also increases

27 Use canonical URLSs, https://support.google.commastters/answer/139066
#puyplicate content — Google, https://support.goagie/webmasters/answer/66359

Impact Factor (JCC): 4.6723 NAAS Ratj 1.89

Focused Web Crawler Development Challenges: Eccraer 13

exponentially.To crawl all these pagesye concurrent connectioare neededto bepened to the same h by spawning
multiple crawling agents. Howevewher the default settings are usedET framework only alloss having two
connections concurrently to the saserve. Two connections concurrently aitee default limit defined bHTTP/1.F°
protocol in 1997At that time, when tt capabilities of web server hardware and softveamedaken into account, this limit
can be considered as reasonablewever nowadays, the power of web sernfardware and softwe has significantly
increased. Additionally, sizes @febsite. have been exponentially increas@d.a consequence of 1 sestated reasons, to
obtain better crawling performanees need t usemultiple crawling agents to the same htherefore this limit needs to
be increased. Moreovemany of the modern web browsers alreallow more than twg@ersistent connectio for each
host (e.g. Mozilla Firefox allows sigurren connections by default as it can be seeRigure2). Concurrent connection
limit per host can be increased >tinc up Default Connection Limit parameter stsown inCode Snippet 9 for .NET
framework when using C#. Thisaramete must be set before the web requissimad: hence; EcCrawler sets this
parameter at the start of the application

m

Firefox | aboutconfig ® | @ | Q search
Search: | connections
Preference Mame Status Type Value
network.http.tcp_keepalive.short_lived_connections default boolean true
network.http.tcp_keepalivelong_lived_connections default boolean true

network.http.max-persistent- connections- per-senver default integer

network.http.max-persistent-connections- per- proxy default integer 32
network.http.max-connections default integer 256
network.websocket.max-connections default integer 200

Figure 2: Default Max Persistent Connectionsper Server Settingsfor Mozilla Firefox Version 44.0.2

ServicePointManager .UseNagleAlgorithm =
/https://msdn.microsoft.com/en -
us/library/system.net.servicepointmanager.usenaglea
/Used to reduce network traffic by buffering

/ and transmitting them as a single packet

true

Igorithm
small packets of data

ServicePointManager .Expect100Continue = false

/Setting this false will more likely to improve pe
| some servers does not support it

ServicePointManager .CheckCertifica
/If certificate revocation is not important for de
| setting this false more likely to improve perfor

ServicePointManager .DefaultConnectionLimit = 1000;
[This sets to maximum number of concurrent

teRevocationList =

rformance because

false ;
veloped crawler
mance

connections to same host

Code Snippet 9: How to Increas¢he Maximum Number of Concurrent Connectionsto the Same Host and Improve
the Fetching Performanceof the Crawler by Tuning the Network Configuration

For further analysis, we hawexaminer statistics of the top 10 Turkish Brmmerce websites Turkey by using

Hypertext Transfer Protocol HTTP/1.], https://www.w3.0rg/Protocols/rfc2616/rfc2616.h

www.iaset.us

editor@iaset.us

14 Furkan Goziikara & Selma Ayse Ozel

Alexa® and Google services to see whether maximum twalsimeous persistent connection for each hostiiatsa or
not. Our aim in this analysis is to test whethesthtargeted E-commerce websites’ daily fresh obwrizuld be obtained
while obeying concurrent connection count limitatiof the HTTP/1.1 protocol. So estimated index $tweecach website
is collected by queryingsite:mysite.com” from Google. Then, average loading speed of eaftlthese websites are
gathered from Alex a which calculates page loadipged by computing how long does it take the usedw/ser to load
DOM (i.e., the structure of the page which doesindiude images or CSS styles) of the page. Loadpeed of browser
can be slower than page source fetching of theleravowever, since Alex a takes only DOM loadintpinonsideration
and has enormous statistical data about these wwepsie believe that this measure can give an bvdea. According to
the Cho and Garcia-Molina [29], more than 40% af flages in thecom®domain changes every day. So to keep the
freshness of the E-commerce websites, we havelasduminimum number of daily page crawling requient for each
site and this is computed by multiplying the estdapage count of the site by 40%.Moreover,we teateulated how

many pages can be crawled for each E-commerce t@edssfollows:

HXMXSXCC

HPCBC(e) =

whereHPCBC (e) is the number of pages that can be crawled foséhected E-commerce website in a days
hours in a day (i.e., 24)M is minutes in a hour (i.e., 603, is seconds in a minute (i.e., 6@y is the concurrent
connection count (i.e., 2), amlS(e) is the average load speed in seconds of the sdl&tommerce website which is

directly taken from the Alexa’s statistics. Theuks are displayed in the Table 1where estimatddxrsize is provided by

Google and the coverage;% wherePCD (e) is the minimum #of page to be crawled per daytorawl the updated

content each day.

Table 1: Statistical Analysis of Concurrent Connedbn Limit on E-Commerce Websites

_ Estimated Average #of Pages to be | How Many Pages

E-commerce Site Index Size Load Speed| Crawled per Day | can be Crawled per | Coverage
(ALS(e)) (PCD(e)) Day (HPCBC(e))

Gittigidiyor 788,000 1.682 315,200 102,734 %32.59
N1l 781,000 1.079 312,400 160,148 %51.26
Hepsiburada 778,000 1.605 311,200 107,663 934,59
Vatanbilgisayar 3,230,000 1.758 1,292,000 98,293 .6%7
Trendyol 570,000 2.053 228,000 84,169 %36.91
Teknosa 1,070,000 3.153 428,000 54,804 %12/80
Markafoni 473,000 1.999 189,200 86,443 %45.68
Sanalpazar 552,000 0.986 220,800 175,253 %79.73
Kitapyurdu 627,000 1.088 250,800 158,823 %63.32
Tozlu 1,110,000 1.141 440,000 151,446 %34.41

When the results in Table lareanalyzed, it candmeladed that two concurrent connections at a tamee not
enough to keep up daily content freshness in tedagb. However, these are rough estimations, atadlet experiments

may be required to obtain more accurate resultausecof several reasons:

30 An Amazon company that provides public statistibsut websites, http://www.alexa.com/
3COM = Commercial, any commercial related domainsting the second level requirements,
http://tools.ietf.org/html/rfc920#page-2

Impact Factor (JCC): 4.6723 NAAS Ratj 1.89

Focused Web Crawler Development Challenges: Eccraed 15

» Google statistics are not entirely accurate tthexe may be more pages;
» Statistics that are provided by Alexaare estimatiofwarious parameters, and they may not be \ayrate;

» Page crawling speed is highly depended on the mktaennection speed and the time of the day whenatbb

server is accessed;
e Itis not possible to crawl only updated pages auitire-crawling the other pages as well;
* 40% update estimation is based on the experimenigucted in 1999 and today it may be very diffepmtent;

* In some cases not daily but hourly, even minutedgliness may be required, which means crawlingnfone

pages may be necessary;

» There are some websites that contains much mortertoand thus requires much more frequent crawling

sessions (e.g. Amaz&rhas 161,000,000 estimated index size, and so on).

Even though these statistics are not perfect, itléar that only twoconcurrent connections is naffigent
currently, and it should be increased accordinthéotasks that are running, and the system resswsed by the tasks.
Therefore, we have set this limit to a large numbkich is equal to 1000. On the other hands, teqreany bottleneck
on the E-commerce websites, wemake sure that we haver exceed 50 concurrent connections, as ommm
crawling agent count per website has been set to/&thave set this number based on our empiricadlysinaof the

crawling speed by testing several different values.
Database Communication

In EcCrawler, all of the database queries are drélcoly using a single database handler class. Usgde class
makes database handling system easier to manageraSelifferent functions are written to handle e cases
according to EcCrawler requirements. One of thalskte management functions designed for EcCrawlehdwn in

Code Snippet 10.In the displayed function theresakeral key parameters:

» when integrated security=SSPI is used, no user ilpassword is required since the Windows’s current

credentials is used for authentication;

* Max Pool Size=20000 sets the connection pool sizhedSQL-Server for that client and if the apptioca opens

a lot of concurrent connections to the SQL-Serkiex parameter should be set to a high number;

« enabling Poolind improves overall performance by preventing froreripg a physical channel each time a new

connection is opened;

« Connection Timeout determines the timeout of cotioe@pened before the connection is automaticadtged
and this should be set to an appropriate valuerditgp to the scenario (e.g. if exhausting queries lzeing

executed, this timeout should be set to a high raurrborder to prevent connection problems);

*+ CommandTimeout is a different parameter than thean€ction Timeout thus it should also be set to

anappropriate value.

*http://www.amazon.com/
33QL Server Connection Pooling, https://msdn.miditosam/en-us/library/8xx3tyca(v=vs.100).aspx

www.iaset.us edit@iaset.us

16 Furkan Goziikara & Selma Ayse Ozel

Performance improvement of this function comes fruming a single database connection for executinigpte
updates or insert operations. The function geist @1 parameters and objects of multiple querig$ then save them in the
database by using Sql Command. This kind of batskrts and updates may improve overall performaggareventing
multiple server connection authentications. To miae the number of server connection authenticatsningle static
connection is shared a mong all of the threadsdwgnt authentication overhead. However, SQL catiimeds not thread
safe and need to be locked each time it is accekse#t methodology can decrease overall performavioen there are

too many threads and, therefore, it is better tbausew connection for each thread.

public static string srConnectionString = "server=localhost;database=dbBame;
integrated security=SSPI; Max Pool Size=20000; Pool ing=True;Connection
Timeout=3000;" ; //define connection string
public static bool batch_execute_ CMD_update_delete(string srCommandText,
List <string > Ist_ Command_Variable_Names,
List <List <object >>Ist_Command_Parameters, CommandTypecdType)
/a generic function that can be called from any th read
{
bool blErrorHappened = false
try
t _ . . _
using (SglConnection connection = /linit SQL connection
new SqglConnection (DbConnection .srConnectionString))
{
connection.Open(); /lopen SQL connection
for (int i=0;i<Ist_ Command_Parameters.Count; i++)
{

using (SglCommand cmd =
new SglCommand(srCommandText, connection))

{
try //catch if any error happens
cmd.CommandTimeout = //set execution timeout
PublicSettings .irCommandTimeOutSettings_Second;
cmd.CommandType = cdT ype; //set command type
for (int k=0;
k < Ist._ Command _Parameters]i].Count; k++)
/ladd command variables with an order

{
cmd.Parameters.Ad dwithValue(
Ist Command_Vari able_Names[K],
Ist Command_Para meters[i][K]);

}

cmd.ExecuteNonQuery (0; /lexecute SQL command

}
catch (Exception E){ //llog errors here }
}
}
}
} _
catch (Exception E){ //llog errors here }
return !'blErrorHappened;
}

Code Snippet 10: A Shortened Version of Batch Comnmal SQL Query Execution Function of EcCrawler
We present experiments on the effects of batchsacte database and static connection performance in

section0.Additionally,it is a good practice to uflthe same tables from the same threads always.niéthodology can

Impact Factor (JCC): 4.6723 NAAS Ratj 1.89

Focused Web Crawler Development Challenges: Eccraed 17

prevent crucial table locks and improve the ovgpalformance. However, select statements, in gersmdirected to the
same table from different threads. Thus, therebmanccasions that both select and update statermenexecuted on the
same table at the same time from possibly diffemntnections. In such casdransaction was deadlocked on lock
resources with another process and has been chosen as the deadlock victim” error may happen and SQL server always
undoes the least amount of work required by thasaetion. By default, priority of select transantois lower than
priority of update transactions, so select transastare denied. The possible solutionto this mnwbls to check SQL
server errors and if there is a resource deadlactiv error when thes elect statement is executieel, same select
statement is repeated a pre-determined numbemestivith a delay. Moreover, every unexpected ehould be logged

and handled in a proper way.
Pages Processor

Pages processor class processes pages, and gsrthlatsemi-structured data into the structurenh.fdrhese
specific processors are also known as wrappers ifBOhformation Retrieval (IR)area and they are afethe most
important parts of the focused web crawlers. Génerb crawlers also have page processing tasks, (®Jg link
extraction) however, when focused web crawling sde the task is usually much more complex becthesaim of

focused crawling is to obtain structured data fromstructured targeted domains.

Commercial systems usually require very high succate of obtaining targeted data. Obtaining susttess
rates by using automatic or semi-automatic wragegreration methodologies (e.g. [31, 32]) are verydho achievein
practice today because of various reasons: (i) feosvhave become so robust in the recent yearshiatdisplay even
very erroneous HTML source data correctly and thats are not presented as structured as befgrep(iplexity of the
web pages has significantly increased and the amofinordinary structured data (e.g., table usage,) ehas
decreased.Therefore, in order to achieve a verl bigccess rate, we decided to develop the wrapparsially for
EcCrawler and we obtained very high success rage ébout 100%).As our crawler only visits a petedmined set of e-
commerce websites, we can develop some rules byafigrnnspecting the source codes of the produgepdo extract
information about the products. When the manuappea crafting methodology is chosen, the systernigdds extremely
important for rule generation. Proper system desitgkes the rule generator's job extremely easy iemgoves the
software performance. For example, for VatanBilgigaE-commerce website, if a nobject, that satstiee below
conditions, exists in the source code of the crdwlage, the page is determined as a candidate girpdge and it is

processed by page processor agent:
e HTML Object Type: span
* HTML Object Identifier: class
e HTML Object Identifier Name: aktKod

Main task of pages processor is to translate tseetkinformation from raw HTML source code intsteuctured
form by using the wrappers. For this task, regebgsression® (regex) can be utilized. However, due to the erous

nature of the source codes and the complexity efrdlgexes that are required, using an advanced Hpadsing library

*Regular expression — Wikipedia, http://en.wikipedig/wiki/Regular_expression

www.iaset.us edit@iaset.us

18 Furkan Goziikara & Selma Ayse Ozel

such as Html Agility PacR can be a better solution. Htm Agility Pack is dalpaof fixing HTML errors and generate
properly structured Document Object Model (D3M)t is open source and written in .NET framewoEcCrawler's
wrappers use Html Agility Pack for information eadtion task. The system design is completely uinéodeveloper. For
EcCrawler, XPatf{ queries are defined for each E-commerce websileeancuted iteratively to get all of the necessary
information (e.g., product title, product categerietc.) in a structured way. There are severaldspgcts when building
HTML parser with Html Agility Pack framework. Htnibocument and Html Node are one of the most commaosbd
classes and they are not System. | Disposable.uBecaf this reason, setting them to NULL when thgect is not
necessary anymore, improves the overall performadoe other important aspect is, to check whetheshgect is NULL
or not before using it due to the unpredictableireabf the web crawlers. Additionally, in some sg®rsing JavaScript
Object Notation (JSON) data is also necessary.usage of JSON significantly increases performarycerbviding more
asynchronous pages and better user experience.vdowdtml Agility Pack is not capable of parsingQI$ data. For
parsing JSON data, another open source and freeylibson.NE¥ is used.

Collaboration and Resource Sharing Between Differa@nThreads

Collaboration and resource sharing between diftetmeads can be done either by using a databasensyas a
middleware or having public functions to accesvqgig variables. Using the database as middlewaredegrade the
system performance due to connection authenticati@rhead and accessing to the hard disk insteadsiof RAM.
Resource sharing between different threads reqdaesaccess to the same objects from multiplatisrat the same time.
Collaboration between multiple threads can be @usty properly locking thenon-thread-safe obje@fote accessing

them.

There is a dedicated class in EcCrawler, which $ietdtistics and events’ logs to show on the ugerface and
save to the hard disk. For keeping events’ logsapr static List objects are used and accessegubfic functions. For
statistics such as how many pages are crawledicpstiaktic long objects are used. However, operatimm the numerical
objects (e.g., integer, long, etc.) are also nwmatl-safe, and thus, they need to be either lodtethore properly
Interlocked method is needed to be used when dngetseem for both read or update. Also, to enshredad safety, it is a
necessity to use the same locking object for timesaon-thread-safe objects. If multiple objects wsed for locking to
ensure thread safety of a non-thread-safe objeistntay result in either error or data inconsisyericmay even cause
deadlocks when a thread locks the first objectatrttie same time, another thread locks the secgetpbhnd no locks are
released until the same thread locks both of thecthCode Snippetlshows an example usage of Inter locked and

object-based locking method.

¥ HtmlAgilityPack is an agile HTML parser that builds a read/write DOM and supports plain XPATH or XSLT",
https://htmlagilitypack.codeplex.com/

% Document Object Model — Wikipedia, http://en.wikia.org/wiki/document_object_model

37X ML Path Language (XPath) — W3C, https://www.w3/aig/xpath/

3 popular high-performance JSON framework for .NEffp://www.newtonsoft.com/json

Impact Factor (JCC): 4.6723 NAAS Ratj 1.89

Focused Web Crawler Development Challenges: Eccraed 19

Interlocked .Increment(ref GlobalStats .long_GlobalPageFetchFailCount);
[thread safe increment

Interlocked .Read(ref GlobalStats .long_GlobalPageFetchFailCount);
[thread safe read

private static readonly object _lockObject = new object ();
/read only object to have lightweight locking

private static void functionName ()

lock (_lockObject) llensures thread safety inside

{

//do operations here, they are thread safe

}

}

Code Snippet 11: Examples for Proper Locking to Preide Thread Safety
Error Log System

In software development,unexpected errors can awappen and in the worst cases they may caus@ectex
application terminations. Alsoit is very hard tsttéhe application for all cases and fix all of ffwssible errors before the
public release. In order to minimize these possibters, software developers tend to follow sofeveelease life cycf@
(e.g., alpha, beta, release candidate, etc.). Tovexeliogging every error, and handling unexpectedrg are crucial and
important. In EcCrawler, an entire class is desigfe error-logging. This class uses Stream Whietaiss to log errors
into the text files. The database system can atsased to log errors however for faster logginghaee used text files.
Stream Writer object is not a thread safeobjectdmes not Flush after every write automatically by default. SoKing
is necessary when accessed by multiple threads, AlBas to be either manually flushed or autsfilinustbe set to true

not to lose any data in case of unexpected apgic&rminations.
Thread Count Management System

The thread count management system is an impogartt of developing a multi-threaded software. The
importance increases when particular tasks neegrtait number of active threads constantly. Fomgla, to keep a
steady number of active crawling agents for eac$t halividually, we propose that one possible sotuts to use the
polling methodology by timer based checks. In thithod, spawned threads are kept in a threadNisenever the timer
ticks, the number of unfinished threads is checlked, the required number of new threads are stageshown in Code
Snippet 12. This strategy properly ensures thahgtgiven time there exist a certain number ofvactiireads for the task.
For multi-threading in .NET 4+, two different classwhich are Tadfand Threatfclasses can be used. Managing and
starting Tasks are relatively easier and have bpégormancé' than using Threads. Thus, Task class is prefestating

from .NET 4+ when writing multi-threaded applicat Therefore, EcCrawler uses Task class insteatirefad class.

¥s0oftware release life cycle — Wikipedia, https:Mékipedia.org/wiki/Software_release_life_cycle
“OStream Writer Class — MSDN, https://msdn.microsofn/library/system.io.streamwriter(v=vs.110).aspx
1« Clearsall buffers for the current writer and causes any buffered data to be written to the underlying stream’40

**Task Class — MSDN, https://msdn.microsoft.com/eftiarary/system.threading.tasks.task(v=vs.110).aspx
“*Thread Class — MSDN, https://msdn.microsoft.comisfibrary/system.threading.thread(v=vs.110).aspx
“Task Parallelism — MSDN, https://msdn.microsoft.éemaus/library/dd537609(v=vs.110).aspx

www.iaset.us edit@iaset.us

20 Furkan Goziikara & Selma Ayse Ozel

private Timer _timer;
private void Button_Click(object sender, RoutedEventArgs e)
Task .Factory.StartNew(() => /Istart task as a background thread
startCheckingTimer();
h CancellationToken .None, TaskCreationOptions .LongRunning,
TaskScheduler .Default);
/[TaskScheduler.Default ensures seperate than main thread
}
private void startCheckingTimer()
{
_timer = new Timer (doStuffParallel, null , 100, 1000);
/[constantly starts new separate than the main thre ad tasks
[lwith a timed interval even if error happens in th e started task
}
private List <Task > startedTaskList = new List <Task>(); //inittask list
private int irMaximumNumberOfParallelTasks = 100; IIset # of parallel tasks
private void doStuffParallel(Object state)
startedTaskList. RemoveAll(tsk => tsk.Status == llremove completed tasks
TaskStatus .RanToCompletion);
for (int i=0;
i <irMaximumNumberOfParallelTasks - startedTaskLis t.Count; i++)
{
Task myTask = Task .Factory.StartNew(() =>
{
/ldo operation here
} CancellationToken .None, TaskCreationOptions .LongRunning,
TaskScheduler .Default);
myTask.ContinueWith(t => LogError("log error here"),
TaskContinuationOptions .OnlyOnFaulted);
/leven if unhandled error happens it will be handle dand
/lapplication continue to run
startedTaskList. Add(myTask);
}
}

Code Snippet 12: An Example for Multi-Thread Managenent System that Ensures Responsiveness of the Ul

EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section experiments performed and theiultesare presented to evaluate the efficiency dma t
performance of the proposed methods. All of theeeixpents are performed on a personal home compaténg the

below configurations:
e Operating System Windows 8.1 (6.3) Enterprise Edition 64-bit (BUB600)

e CPU: Intel Core i7-2600K CPU @ 3.40GHz, 1 CPU - 4 Gor® Threads, Frequency4544.05 MHz (45 * 100.98

Impact Factor (JCC): 4.6723 NAAS Ratj 1.89

Focused Web Crawler Development Challenges: Eccraed 21

MHz) (Information received by CPU%Z1.72 x64)

* RAM: 32768 MB, DDR3-1346 - Dual Channel, Frequency.B78Hz (1:5), Timings 9-9-9-24 (Information
received by CPU-Z 1.72 x64)

» Hard Disk: 2x OCZ Vertex 4, Raid 0 setup with stripe siz&B4Write-Cache Buffer Flushing: Enabled, Cache
mode: Write back, Sequential read 742 MB/s, writ2 ¥1B/s, Random 512 KB read 482 MB/s, write 486 BIB/
Tests are done at CrystalDiskM&8.0.4 x64. Access time: 0.127 milliseconds (actiess tested by HD Tune
Prd*’ 5.50). Other than from synthetic tests, when mgai large amount of data (30 GB+) from the SQlveser

the windows task manager displayed630 MB/s readdspdth 6000 milliseconds average response time

» Internet Connection (Network Speed) 50 Mbit/s download, 5 Mbit/s upload, personal lofiber connection,

provider: Turkcell Superonlirié

» Best Performance SettingsHTTP compression is enabled, initialization of tihread pool is enabled, garbage

collector mode is set to server, and concurrenheotions limit is increased.

All of the tests (except source code compressiomeaecuted for 30 minutes and in each minutessitzgiof the
conducted tests are collected. In order to colettvork traffic statistics, FiddI& framework is used. The RAM usage
and the CPU usage statistics are collected by W@mfiprmance Counter class and1-second pollingadetbgy which are
also used by Windows Task Manager. We use a meashieh we call as “Ul responsiveness” to evaludie t
performance of our system. The main task of outesyds called as Ul and there fore Ul responsivengshe response
rate of the Ul to the Ul changes. Ul responsivengssdirect indication of the system performandemwall of the tasks
are started independent from the Ul thread sincendl lag only when the application itself is thiiat} in such scenario.
The Ul responsiveness is measured by the followinategy:(i) only a class is used to refresh UIMmynitor. TryEnter
locking strategy as shown in Code Snippet 5; (@a&ach Ul refresh is completed, the time of tfeesh is recorded;
(iii)the Ul is updated per 0.5 seconds. We havesehaupdating per 0.5 seconds becatnsgh“update speed” profile of
Windows Task Manager also uses0.5seconds inteovatftesh the statistics. So after the applicat®started, each
second has exactly 2 times Ul refresh proceshefcbrresponding second has any missing refresh cibunted as Ul
freeze, if the second has more than 2 times Uksélfrit is counted as Ul lag (delayed update carisety). The total
responsiveness of the Ul is measured as the nuoflcerrect Ul refresh matches in each second divtiethe number of
total expected Ul refresh. So if the Ul is refradtZtimes within each second, the Ul responsiveie460%. Refresh

count over than 2 or less than 2 in a second mbans is either Ul lag or Ul freeze which both regWI responsiveness.

Average application threads count is calculatedifingl-second polling methodology and Process. Get@t
Process().Threads. Cotdhmethod. Maximum 300 concurrent crawling agentsused for experiments and maximum

crawling count for each website is limited indivadly. We have used 50 different E-commerce sitedHe experiments

CPU-Z is a freeware that gathers information on eormof the main devices of your system,
http://www.cpuid.com/softwares/cpu-z.html

“6 CrystalDiskInfo is a HDD/SSD utility software (apesource) which supports S.M.A.R.T and a part oBYDD,
http://sourceforge.jp/projects/crystaldiskinfo/

* http://www.hdtune.com

“Bhttp://www.superonline.net/kesfet/fiber-internet

“9The free web debugging proxy for any browser,esysor platform, http://www.telerik.com/downloadAigr

% MSDN, https://msdn.microsoft.com/en-us/libraryteys.diagnostics.process.getcurrentprocess(v=vasi.

www.iaset.us edit@iaset.us

22 Furkan Goziikara & Selma Ayse Ozel

and some of them are listed Table 1.When we have tested the limit for the default nemésf connections per host, a
single website is used for experimenting so thatsibit ware can possibly reach the number of coanticonnections per
host threshold. Every crawled page is processedttact URLs in the crawled page, determine theustaf crawled page
as canonical or a product page or not, etc. Howeaae processing that is applied to product pagyedves extraction of
product title, product categories, product featupesduct comments, etc. To determine type of dgepthat is processed,
EcCrawler needs to determine whether the crawlegpare “a product page” or “not” and this is dedidt the link
extraction phase by applying manually generatedstulf the page is not a product page, it is needafor further

processing. During the tests, the number of pagegssing tasks’ count was set to 100.

The tests, other than the source code compressépend on the network capacity, the hard disk pedaoce,
and the SQL-Server caching. Because of the seresaal of these experiments are conducted af@mlocal time for
politeness and more objectivity. In addition, befthe test, the database is reset (returned tal ini#lues), the computer’s
IP address is changed and the computer is restartesse actions were taken in order to solve thlevitng possible

issues:

e It can be expected that the E-commerce websitegeséoad will be lower after the midnight due tecdeased

visitors’ activity. After midnight crawling also iproves the chances of not harassing the crawleditesb

 Both home’s internet connection network load and thawled E-commerce websites’ server network load
changes throughout the day. Because of this reasaking all such network load based tests afteiMLIdcal

time should improve the reliability of the experimte

* Windows 8.1's disk system, SQL-Server, and Wind8viss DNS system make heavy caching of many differe
requests to improve the performance. Conductingemixents consequently can yield unfairness amoeg th
various tests because of these caching. After eaelof the tests, the computer is restarted toudrttie tests in

equal conditions.

» Since the home network is used to carry out this tesd the ISP provides dynamic IP address, tredtiPess is
changed after each one of the tests to preventpasgible IP blockage. However, this may not havenbe
necessary becausewhile conducting the experimestsdijd not notice any IP blockage or we did noeiee any
complaint from any of the crawled web servers’ austrators. Not receiving any complaints or nottiggt
blocked may show that the methods used are suffiteehandle multiple connections from each cligithout

any trouble.
Database Communication

In order to verify the effectiveness of the progbdatabase connection system, we have conductddliiving
3 different tests: (i) in the first test scheme, Imich database access is used, and for each siatabeess a new
connection session is opened and closed,; (ii)érstttond test scheme, batch database access negjyddaised and for
multiple database accesses, a single connectigiosds used and closed; (iii) in the third tedtesne, a static connection
is employed for all of the database accesses bataik®f the different threads by using locking hwology to ensure
thread safety, and it is never closed. The diffeeeinom the batch database access mode is, itausiegle connection to
execute multiple different queries. So it should lb® confused with batch SQL queries. Thereforedtices overhead of

SQL-Server connection session handling.

Impact Factor (JCC): 4.6723 NAAS Ratj 1.89

Focused Web Crawler Development Challenges: Eccraer 23

Database communication experimeare conductedon the EcCrawler systéfoweve, we did not observe any
significant difference between thetbee¢ modes. The reasons for this observation beyhat thesystem has a lot of very
heavy system demandingsks when compared the database session generation and tmay be not enough number of
database connection procedureshtserv: the effectiveness of the proposed systehaslitionally, the executed queries in
the EcCrawler were already heavily tuned to obtaeximum performanc Because of these reas, we decided to

conduct synthetic tests that will heavily the database connections.

In order to carry out theynthetic tests, a new tabledesignedwhich have a singlinteger 32(int) primary key
column. The numbers between 1 an,000 are inserted into this talds primary keys. Then a new softw is developed
to execute the tests. This software spawned 25RsT@sch or is separate from the mathread) and each one of these
Tasks continueso work constantly uni the application is terminated. These Tagkesie: the database and selects a
single Data Row from thgynthetic te« table by generating a random primary key prediceten database accesses of the
Tasks are counted cumulatively the batch databasaccess methodologg single new database connection for ¢
Task is used 50 times before itcl®sec. The table and a sampigiery used in the experiments are prese¢ in Figure 3.
The reason for choosing such a higimber of Task is to maximizehe system resources usage in all cases. 'values
are not optimal values for the best system perfage. Also, very simpledatabase desigis chosen to evaluate the
database connection performance rather the database querying performance. Tésults of these experiments |

shown in Table 2.

Colurmn Mame Data Type Allow MNulls
b7 clld int [
[
ﬁlll:—.

select * from thlSynteticTests where cl Id=323

100 % -

— Results _'_§'| Mezsages

...................

Figure 3: Table and Query Used in the Synthetic Tests

Table 2: Experimental Results for Synthetic Database Connectic

Average CPU | Average CPU | Average Numberof
Test Scheme Usage of the | Usage of the | Completed Queries
Test Software | SQL-Server per Minute

Scheme 1 Single Querper

0 0 :
Database Connection 53.90% 45.12% 3,120,49.

www.iaset.us editor@iaset.us

24 Furkan Goziikara & Selma Ayse Ozel

Scheme 2 - Batch Mode —
Multiple Queriesper 51.21% 45.65% 3,982,170
Database Connection

Scheme 3- A Single Static
Connection for all of the 99.17% 0.49% 58,891
Threads and the Queries

When the results in Table 2areanalyzed, Scheméh2 isest performer by almost equalizing the CRlization of
both software and SQL-Server. Thus, it also aclsiegebtain highest number of queries per minuteelVScheme 1 and
Scheme 2are compared, the CPU usage of softw&ehieme 1 is slightly higher than that of the Sch@mEhe possible
reason of this can be that the software spends timeegto establish a new session for each quetgaasof using the same
session for multiple queries. When the results diethe 3are interpreted, we see that the test seftuses a massive
amount of the available system resources, and S&le§ utilization is poor. The possible reasonti$ is, each time a
Task demands a database access, it has to loskatieedatabase connection. If the connectionresadly locked, it has to
wait. This locking process is significantly systelemanding, and this is probably the main causenbilanced CPU

usage between the test software and the SQL-Sanderesults in a lower performance.
Source Code Compression

Page processing is a much more challenging task vthe compared to crawling pages and saving tbeince
code task. Because of this reason, page proceasidigpage source saving task shave to be asynclwoBmce the
crawling task is much faster than the page prongssisk, to achieve asynchronous execution, satodes of the web
pages have to be kept until they are processed.ekenystoring the raw source code of the crawlegepaakes huge
space both on the disk and in the RAM. Findingdgpgmal compression algorithm for the developedusa can help to
reduce space requirement. If the disk space usagmiie crucial than the CPU requirement for theettgped software, a
more aggressive compression can be chosen. Howtherpbtained experimental results indicate tha¢ o the

compression methods clearly surpasses every otetbroch by theCPU_requirement/compression ratio.

For the compression tests, the dataset which iergead by EcCrawler is used. 100,000 pages areomayd
chosen from the dataset. The features of the pagbe dataset are as follows: maximum source ciwke (UTF-8) of a
single page is 8.54 Megabytes, the average si2é.&8 Kilobytes, the minimum size is 23.68 Kilolsstand total size of
all uncompressed source codes size is 8.26 Gigabiitken testing Gzip compression algorithm, .NEfe work is used
because it natively supports Gzip. For testingatier compression algorithms, 7-Ziforary is used with Compression

Level set to Normal. To use 7-Zip DLL file in C#e&n Zip Sharfis used as a wrapper.

The results of thecompression experiments are predenTable 3 wheréMin ,Max,and Avg Compressed
Source Sizeare the minimum,the maximum, and average sizehefdompressed source code of acrawled page in
kilobytesMin ,Max, and Avg Compression Time are the minimum,the maximum, and average elapsad for
compressing source code of a crawled page in etlisddylin ,Max, and Avg Decompression Timeare the
minimum,the maximum, and average elapsed time fecochpressing source code of a crawled page in
millisecondsMin ,Max, and Avg Compression Benefitare the minimum,the maximum, and averageof thegmage

difference between the size of the compressed arsivarce codes of a crawled paygg CPU Usages the average CPU

*!0Open source 7-Zip is a file archiver with a higlmgwession ratio, http://www.7-zip.org
2 Managed 7-zip library written in C#, https://sexgsharp.codeplex.com/

Impact Factor (JCC): 4.6723 NAAS Ratj 1.89

Focused Web Crawler Development Challenges: Eccraed 25

usage of the system while compression experimeatsuaning.

Table 3: Comparison of the Compression Methods

Mode: Gzip | BZip2 | Deflate Deél;:tte Lzma | Lzma2 | Ppmd
Min Compressed Source Size 9.01 9.30 8.75 875 | 874 8.75 8.08
(KB):) . .
maBX)_C"mpreSSEd Source Size | g 471 | gasg | 8472 | 8472 | 84700 8472 8577

Avg Compressed Size (KB): 2497 | 24.09 22.78 22.78 22.78 22.79 21.80
Min Compression Time
(milliseconds):

Max Compression Time
(milliseconds):

Avg Compression Time
(milliseconds):

Min Decompression Time
(milliseconds):

Max Decompression Time
(milliseconds):

Avg Decompression Time
(milliseconds):

Min Compression Benefit (%): 2.42 2.40 3.14 3.14 3.16 3.14 1.94
Max Compression Benefit (%): 91.77 | 93.33 92.93 92.93 92.93 92.93| 93.50
Avg Compression Benefit (%): 7118 | 72.20 73.70 73.70 73.71 73.70| 74.84

Avg CPU Usage (%): 1751 | 16.67 | 16.22 19.16 16.26 16.43 17.31

0 13 27 15 22 27 13

366 637 4,700 1,977 4,679 4,718 3,93(

1.53 42.03 61.27 39.20 57.99| 62.07 38.37

0 10 20 9 19 20 11

178 732 541 527 567 538 4,369

0.39 31.14 57.93 30.57 57.49| 57.15 30.6¢

\>Z4

In Table 3, the best values for each performaneduation parameter are written in bold face. Acaggdo the
results that are presented in Table 3, Gzip cleaurtperforms the other methods when both the cosspoe ratio and the
compression times are considered. Even though e @btains lower average compression ratio thamwfalhe other
methods, it is at least 15 times faster than theromethods for the compression task and 78 timakey than the other
methods for the decompression task. The compregmdiormance gain of the other methods is extrertmly when

compared with their increased time requirementl@whuse of this reason EcCrawler uses Gzip.
Using Compression While Fetching Pages

Today, the majority of the web servers supportspressed data transferring, however by default, .M&8s not
make the HTTP requests with compression enabledessary headers are needed to be includedin thestsg and
automatic decompression needs to be enabled asmsho@ode Snippet 8, to fetch web pages with HT©Rgression.
The results of the HTTP compression enabled tastthe default Http Web Request class tests asepted in Table 4
where the gray highlighted rows are the best perémce settings (i.e., compression enabled) andahéighlighted
(white) rows are the results of the same settingsnAHTTP compression is deactivated.

In Table 4Crawl Successis the number of successfully crawled web pagesyl Failis the number of
unsuccessfullycrawled web pagkeg # of Pages per Minute Crawik the average number of successfully crawled web
pages per minutdyg # of Processed Pages per Minutes the average number of processed pages per ewingt
Download Speed per Seconit the average bandwidth in kilobytes used byaplication per second to download web

pagesivg Upload Speed per Secorid the average bandwidth in kilobytes used by thaieation per second to upload

www.iaset.us edit@iaset.us

26 Furkan Goziikara & Selma Ayse Ozel

data (upload is used for only connecting the web}ito the web serveBiscovered Unique URL$s thenumber of

discovered unique web pages. Other metrics usttkitable are self-explanatory.

Table 4: The Effect of Compression Enabled HTTP Regests Experiment

HTTP Compression (Minutes) 5 10 15 20 25 30
30,917 62,595 | 98,092 | 134,875| 171,821 | 210,189
Crawl Success
19,860 40,824 62,178 84,260 106,082 126,135
114 459 1,348 1,622 1,697 1,754
Crawl Fail
199 486 740 991 1,828 2,818
Avg# of Pages per Minute 6,086 6,195 6,485 6,693 6,827 6,960
Crawl 3,914 4,046 4,115 4,184 4,213 4,198
Avg# of Processed Pages per 815 805 780 738 715 704
Minute 701 722 699 693 679 670
Avg Download Speed Per 2,536 2,550 2,665 2,633 2,631 2,660
Second (KiloBytes) 5,645 5,759 5,790 5,769 5,791 5,805
Avg Upload Speed Per Second 38 39 42 44 44 45
(KiloBytes) 21 21 21 22 22 22
_ _ 153,994 207,914 | 259,737 | 309,515 | 346,910 | 383,869
Discovered Unique URLs
115,564 168,024 211,293 236,519 261,804 291,895
1,003 1,106 1,177 1,229 1,275 1,292
Avg RAM Usage (MegaBytes)
1,031 1,118 1,153 1,179 1,198 1,215
59.74 62.07 63.36 63.89 64.35 64.71
Avg CPU Usage (%)
32.78 32.45 33.01 33.01 33.11 33.04
542 555 553 554 558 562
Avg# of Threads Spawned
623 644 663 696 725 756
) 98 98.41 98.22 97.95 97.83 97.80
Ul Responsiveness (%)
98.5 98.58 98.66 98.62 98.56 98.61
2 1.58 1.77 2.04 281 2.19
Ul Freeze (%)
15 1.41 1.33 1.37 2.16 1.38
0.33 0.16 0.11 0.16 0.2 0.16
Ul Lag (%)
0 0.08 0.05 0.08 0.06 0.05

When Table 4 is analyzed the benefit of HTTP comsgiom is clearly observed. As mentioned in theirtgst
platform specifications, the maximum download speédhe internet connection was 50 Mb its per sd¢awmhich is
roughly equal to 6400 Kilo Bytes per second. OteeHHTTP compression was disabled, the testing systtwork load
was maximized, and this hindered the number of pdgiehed per minute. Enabling HTTP compressione®es the
number of pages crawled per minute by 65.79% awrdedses the bandwidth usage by 54.17%. Anotherriargioaspect
of these tests is the number of processed pageamsipeate. In the first 5 minutes, the number of mssed pages per minute
is significantly higher than the HTTP compressigsabled mode. However, this difference decreaseseame passes.

The reason of this is, at the beginning, therersmeenough product pages to process until the pageessing tasks

Impact Factor (JCC): 4.6723 NAAS Ratj 1.89

Focused Web Crawler Development Challenges: Eccraed

27

countis maximized. Thus, the faster page crawlioglens obtained by processing more pages. Howaseanore pagesare

crawled, the number ofobtained product pages iseeand the maximum capacity of the page procesasis are

surpassed and the gapis closed and theaverage nompages processed per minute for both modes stlivecomes

equal.

The reason of having differencebetween the two madderms of average number of threads spawnéuhts

when the HTTP compression is enabled, it fetchgepdaster. Thus, the operation is completed faatat the crawler

thread is terminated quicker than the HTTP comjwads disabled mode. When the HTTP compressi@mébled, the Ul

responsiveness reduces slightly due to the fatf ilvdhe case of compression, more pages are ggedethus heavier

processing is done.

Initialization of Thread Pool

By default, .NET framework spawns a certain nundfe¢hreads by the pre-defined heuristics to maxnsigstem

performance. However,.NET framework heuristics magult in lower performance by using as mallerportdf the

available resources. Hence, initialization of tlrggool manually may improve the system performagesatly. The

initialization of the thread pool is shown in Coflmippet 1. In Table 5,the results of the initidii@aa of the thread pool

experiment are presented. In the table, the grglylighted rows include results of the best perfarogasettings in which

thread pool is initialized, and the not highlight@ehite) rows display results of the same settiegsept that the thread

pool is not initialized.

Thread pool experiment clearly shows the perforraagain at the Ul responsiveness. Even though thebat of

active threads increasesover the time as the framkeoptimizes the count of the activethreads, tedgsmance loss of

the default settings is still significant. Initiadition of the thread pool utilizes the applicationusing the system resources

more efficiently and achieves better performance.

Table 5: Result of the Thread Pool Initialization Experiment

Thread Pool (Minutes) 5 10 15 20 25 30
30,917 | 62,595 | 98,092 | 134,875 | 171,821 | 210,189
Crawl Success 16,727 | 45068| 71,034 97,986 121,094 131,132
_ 114 459 1348 | 1,622 | 1697 | 1,754
Craw Fail 110 252 547 715 969 1,182
. 6,086 | 6,195 | 6485 | 6,693 | 6,827 | 6,960
Avg# of pages per Minute Crawl 3017 | 4260 | 4550 4744] 4691 4244
_ 815 805 780 738 715 704
Avg# of Processed Pages per Minut 377 585 678 692 701 664
. _ 153,094 | 207,914 | 259,737 | 309,515 | 346,910 | 383,869
Discovered Unique URLs 99,360 | 155312] 195540 228940 252,605 263,187
1,003 | 1,106 | 1,177 | 1,229 | 1,275 | 1,292
Avg RAM Usage (Mega Bytes) 838 1,056 | 1,139 | 1186 1210 1.236
Avg CPU Usage (%) 5974 | 62.07 | 6336 | 6389 | 6435 | 6471
36.68 40.88 | 40.41| 3967| 3814 34.14
542 555 553 554 558 562
Avg # of Threads Spawned 358 417 448 466 478 500
Ul Responsiveness (%) 98 98.41 98.22 97.95 97.83 97.80

www.iaset.us

edit@iaset.us

28

Furkan Goziikara & Selma Ayse Ozel

41.5 58.33 64.66 68.04 69.46 67.47
Ul Freeze (%) 2 1.58 1.77 2.04 2.81 2.19

58.5 41.66 35.33 31.95 30.53 32.52
Ul Lag (%) 0.33 0.16 0.11 0.16 0.2 0.16

22.33 19.25 17.33 17.20 17.16 18.4y

Garbage Collector Mode Experiment

By default, the garbage collector mode is set tokatation, however, this mode is designed for tihgls core

processors. Nowadays, the majority of the compugeld in the market have multi-core processors.didenot have any

single-core computer to test the mode differenogydver, on the testing platform, changing workstatnode to server

mode improves overall performance significantly.eTdarbage collector mode is set as shown in Codigp&n5. In

Table 6,the gray highlighted rows present resultstlie best performance settings in which garbagjeator mode is set

to server and the not highlighted rows include Itedor the same settings except garbage collentmte is workstation.

If all of the tasks are running as background ttise¢he Ul thread is not used for any processeakifdhere exist

senough system resources to refresh the Ul, theoeld not be any Ul responsiveness problem. Howelethe

application utilizes many threads and these thrbadsily uses system resources as in EcCrawleaptiefettings may fail

to supply necessary system resources to the applicand this may cause the Ul to freeze or lag. Mibpose that this

problem can be solved by manual initializationted thread pool and setting the garbage collectatemo

Table 6: Results of the Garbage Collector Mode Expinent

Garbage Collector Mode (Minutes) 5 10 15 20 25 30
Cranl S 30,917 | 62,595 | 98,092 | 134,875| 171,821 | 210,189
rawl success 7,811 17563 | 25,740 32,789 39,868 48,147
Cranl Eail 114 459 1,348 | 1,622 | 1697 | 1,754
rawl Fal 29 85 104 121 131 162
. 6,086 6,195 | 6485 | 6693 | 6827 | 6,960
Avg# of Pages per Minute Craw 1529 | 1730 | 1.690| 1616] 1568 1,580
. 815 805 780 738 715 704
Avg# of Processed Pages per Minut 518 620 627 633 619 618
Avg Download Speed Per Second 2,536 2,550 2,665 2,633 2,631 2,660
(KiloBytes) 518 550 545 510 495 498
Avg Upload Speed Per Second 38 39 42 44 44 45
(KiloBytes) 9 10 10 10 10 10
o 4 Uniaue URL 153,994 | 207,914 | 259,737 | 309,515 | 346,910 | 383,869
IScovered Lnique LURLS 70,157 | 102,738 126,387 139,490 149,314 163,116
1,003 1,106 | 1177 | 1229 | 1,275 | 1,292
AVgRAM Usage (MegaBytes) 643 648 666 699 734 751
59.74 62.07 | 6336 | 63.89 | 6435 | 64.71
Avg CPU Usage (%) 2564 | 2821 | 2860| 2820 2824 28.7%
542 555 553 554 558 562
Avg# of Threads Spawned 598 606 617 624 627 632
Ul Responsiveness (%) 98 9841 | 9822 | 9795 | 9783 | 97.80
P 0 75.33 71.25 67.94 64.70 62.43 61.61
Ul Freeze (%) 2 1.58 1.77 2.04 2.81 2.19
0 24.66 28.75 32.05 35.29 37.56 38.38
0.33 0.16 0.11 0.16 0.2 0.16
Ul'Lag (%) 25 3.08 2.94 2.62 253 2.36
Impact Factor (JCC): 4.6723 NAAS Ratj 1.89

Focused Web Crawler Development Challenges: Eccraed

29

The experimental results that are presented ineT@ltlearly display the huge performance improvemeéren

we set garbage collector mode to server. The gighlighted rows present the results obtained whenibape collector

mode is set to server, and other rows show thdtsefar the default case. As it can be seen fromtHble, this mode

change boosts the number of crawled URLs by 336fbjraproves the Ul responsiveness by 58.74%.

Concurrent Connections Limit Experiment

In .NET framework the limit for the number of commnt connection sper host is two by default. Hosvev

crawlers are more likely to need more than two eations at the same time for each host when crag digantic

websites. EcCrawler distributes crawling tasks dach host individually by using pre-assigned valwbgch arelO by

default. However with having 10crawling tasks pesthit is quite hard to reach maximum consistest tonnections per

host limitation because of the application proaegsilelays. Therefore, for this experiment, one hed biggest E-

commercewebsites alone is used with 300concurnlicry agents.

Table 7: Results for the Concurrent Connection Limi Experiment

Concurrent Connections Limit
(Minutes) 5 10 15 20 25 30
Crawl Success 36,804 76,486 | 118,736 | 145,322 | 175,070 | 203,082
24,841 54,223 83,540 110,386 138,644 178,467
Crawl Eail 57 76 95 100 104 105
0 3 4 4 4 4
Avg# of Pages per Minute Crawl 7,265 7,588 7,865 7,221 6,961 6,731
4,898 5,375 5,532 5,488 5,517 5,919
Avg# of Processed Pages per 968 823 761 708 695 676
Minute 781 779 734 698 680 674
Avg Download Speed Per Second 1,582 1,643 1,699 1,558 1,501 1,450
(KiloBytes) 1,075 1,167 1,194 1,182 1,185 1,269
Avg Upload Speed Per Second 47 48 49 45 43 41
(KiloBytes) 30 32 33 33 33 35
. . 87,375 | 126,071 | 154,488 | 174,936 | 200,291 | 222,008
Discovered Unique URLs 70,057 | 110,788 136,55] 156,716 176,680 203,28
763 798 829 862 884 903
AVGRAM Usage (MegaBytes) 734 797 839 859 870 882
Avg CPU Usage (%) 54.84 54.18 54.16 47 44,01 41.26
31.08 33.89 33.98 33.46 33.11 36.67
568 567 558 565 567 570
Avg # of Threads Spawned 571 569 569 570 570 563
Ul Responsiveness (%) 98 98.08 98 97.91 97.86 97.86
98.83 98.66 98.72 98.79 98.8 98.8
Ul Freeze (%) 2 1.91 2 2.08 2.13 2.13
1.66 1.33 1.27 1.2 1.2 1.194
Ul Lag (%) 0 0 0 0.08 0.06 0.08
0 0.16 0.16 0.12 0.13 0.11

How to increase the maximum limit and the otherap@tersare shown in Code Snippet 9. The resulthi®f

experiment are given in Table 7, where gray hidittgd rows show the results of the best performasettings

www.iaset.us

edit@iaset.us

30 Furkan Goziikara & Selma Ayse Ozel

(i.e., maximum consistent connections per hostt lisni000) and the other rows display results efsame settings except
that the connection limit is 2.When the resultsegiin Table 7areanalyzed, there is a significanfop@ance boost in the
first 5 minutes. Then, this performance gain desgeagradually, because, the number of the URLsetaiscovered
decreases as a greater portion of the websiteaisled. At the 3 minute, since the majority of the sites were alyea
crawled, the number of the crawled pages almosbrhecequal for the two methods because there wdréefianany

pages to crawl.
All Default Settings Experiment

In the final experiment, the application is run heitit any advanced optimizations to show the effe€tthe
proposed methods. To disable all of the optimizetidtHTTP Compression and KeepAlivefacilities anaaged from the
web page fetcher function; thread pool initialinatiand the limit on the maximum consistent conoecper host are
removed; and finally, garbage collector mode sésugemoved from the APP. config. The results o tekperiment are

presented in Table 8 where the gray highlightedsrdigplay the results of the best performancerggttivhi lethe other

rows show the results of alldefault settings.

When Table 8 is analyzed, a lot of significant ioy@ments in the application performance can berobdeThe

proposed configurations in this paper increasentiaber of crawled pages by 472%, decrease thedgké by 95.77%,

reduce the Ul lag by 96.39%, and improve the Upeoesiveness by 102% with respect to default sedtit@verall

application performance isimproved and the appbeats able to utilize the available system researc

Table 8: Results for all Default Settings Experimen

All Default Settings (Minutes) 5 10 15 20 25 30
30,917 62,595 98,092 | 134,875 | 171,821 | 210,189
Crawl Success 4232 | 8628 | 14,546 21,628 29445 36,728
. 114 459 1,348 1,622 1,697 1,754
Craw! Fail 57 81 105 151 233 325
. 6,086 6,195 6,485 6,693 6,827 6,960
Avg # of Pagesper Minute Crawl 800 818 934 1,038 1127 1173
. 815 805 780 738 715 704
Avg # of Processed Pages per Minute 295 395 463 514 547 555
Avg Download Speed Per Second 2,536 2,550 2,665 2,633 2,631 2,660
(KiloBytes) 1,146 1,117 1,233 1,348 1,437 1,458
Avg Upload Speed Per Second 38 39 42 44 44 45
(KiloBytes) 3 3 4 4 5 5
Discovered Unique URLS 153,994 | 207,914 | 259,737 | 309,515 | 346,910 | 383,869
45,317 62,624 79,247 90,788 103,691 110,341
1,003 1,106 1,177 1,229 1,275 1,292
AVGRAM Usage (MegaBytes) 787 942 918 880 856 869
Avg CPU Usage (%) 59.74 62.07 63.36 63.89 64.35 64.71
17.80 19.74 21.64 23.15 24.29 24.66
542 555 553 554 558 562
Avg # of Threads Spawned 369 450 470 483 488 497
Ul Responsiveness (%) 98 98.41 98.22 97.95 97.83 97.80
18.16 20.08 32.22 40.66 45.43 48.19
Impact Factor (JCC): 4.6723 NAAS Ratj 1.89

Focused Web Crawler Development Challenges: Eccraed

31

Ul Freeze (%) 2 1.58 1.77 2.04 2.81 2.19
81.83 79.91 66.77 59.33 54.56 51.80
Ul Lag (%) 0.33 0.16 0.11 0.16 0.2 0.16
9.5 8.91 6.66 5.54 5.03 4.44

CONCLUSIONS

The methods we have presented in this study fofdbiesed web crawler development process can &gnify
help .NET developers for any software developm@ntording to our experiments, using .NET framewaikhout fine
tuning can significantly hinder the potential apption performance and decrease the utilizatiosystem resources.
There can be even more performance tunings, howhwéng EcCrawler development, source code comjueskiTTP
compression while fetching web pages, initializataf the thread pool, garbage collector mode satgthe maximum
concurrent connection limit are the major ones #ratdiscovered and applied. The proposed methudi®erimental
results presented in this study will help .NET depers to boost their software performance and fasie time to figure
the bottlenecks that can affect the expected pmdace of their application. For the future workCEawler design and
implementation may be modified to make it compatifdr running on a cluster of computers rather thana single

machine. Additionally, a classifier may be embeduethe EcCrawler to determine product pages auioaiy.

ACKNOWLEDGEMENTS

This work was supported by the Scientific and Tedhgical Research Council of Turkey (TUBAK)
scholarship 2211-C.

REFERENCES

1. Chakrabarti S, Berg MVD, Dom B. Focused crawlingieav approach to topic-specific Web resource disopv
Computer Networks 1999;31:1623-40. DOI:10.1016/91B336(99)00052-3.

2. Gupta, Satinder Bal. The Issues and Challenges tivithWeb Crawlers. International Journal of Infotioa
Technology & Systems 20112(1):1-10.

3. Boldi P., Codenotti B., Santini M., and Vigna S.itHawler. A scalable fully distributed web crawl&oftware:
Practice and Experience 204(8): 711-726. DOI:10.1002/spe.587

4. Gomes D., and Silva M.J. The Vilva Negra crawler:eaperience report. Software: Practice and Expeee
2008;38(2): 161-188. DOI:10.1002/spe.v38:2

5. Heydon, Allan, and Marc Najork. Mercator: A scakgbéxtensible web crawler. World Wide Web 2.4 (1999
219-229. DOI:10.1023/A:1019213109274

6. Shkapenyuk Vladislav, and Torsten Suel. Design iamalementation of a high-performance distributedowe
crawler. Data Engineering, 2002. Proceedings. 18ihternational Conference on. IEEE,
2002.D0I:10.1109/icde.2002.994750.

7. Nisha J, and Sundareswari K. Clustered Based Wiserelst Ontology Construction for Selecting Seed &JBf
Focused Crawler. International Journal of InnowvatResearch in Computer and Communication Engingerin
2015;3 (2): 827-830.

www.iaset.us edit@iaset.us

32

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Furkan Goziikara & Selma Ayse Ozel

Uzun E., Guner E.S., Kilicaslan Y., Yerlikaya ThdaAgun H.V. An effective and efficient Web contextractor
for optimizing the crawling process. Software: R and Experience 201444(10): 1181-1199.
DOI:10.1002/spe.2195

Dahiwale P., Raghuwanshi M.M., and Malik L. PDD @ler: A focused web crawler using link and content
analysis for relevance prediction. In the Procegsliof SEAS-2014 — Third International ConferenceSofftware
Engineering and Applications November 7-8, 2014y&UUAE. arXiv preprint arXiv:1411.4366

Yohanes B.W., Handoko H., and Wardana H.K. FocuSeawler Optimization Using Genetic Algorithm.
TELKOMNIKA Telecommunication, Computing, Electrosic and Control 2011; 9(3): 403-410.
DOI:10.12928/telkomnika.v9i3.730

Papavassiliou V., Prokopidis P., and Thurmair, G.mfdular open-source focused crawler for mining
monolingual and bilingual corpora from the web.the Proceedings of the Sixth Workshop on Buildimg a
Using Comparable Corpora August 8, 2013, Sofiag8uid, pp.43-51.

Yanni L., Wang Y., and Du J. E-FFC: an enhancethf’cused crawler for domain-specific deep web hkztas.
Journal of Intelligent Information Systems 2048;(1): 159-184. DOI:10.1007/s10844-012-0221-8

Kumar M., and Vig R. Focused crawling based upddftEemantics and hub score learning. Journalméiging
Technologies in Web Intelligence 2013; 5(1): 70-3®1:10.4304/jetwi.5.1.70-77

Liu H., and Milios E. Probabilistic models for faed web crawling. Computational Intelligence 2028;(3):
289-328. DOI:10.1111/j.1467-8640.2012.00411.x

Bedi P., Thukral A., Banati H., Behl A., and Meradta V. A multi-threaded semantic focused crawleurnal of
Computer Science and Technology 202746): 1233-1242. DOI:10.1007/s11390-012-1299-8

Maimunah S., Sastramihardja H.S., Widyantoro DKuspriyanto K. CT-FC: more Comprehensive Traversal
Focused Crawler. TELKOMNIKA Telecommunication, Caumtipg, Electronics and Control 2012¢(1): 189—
198. DOI:10.12928/telkomnika.v10il1.777

Liu W., and Du Y. An improved topic-specific cramij approach based on semantic similarity vectocespa
model. Journal of Computational Information Syst&0%2;8(20): 8605-8612.

Edwards, Jenny, Kevin McCurley, and John Tomlin. &daptive model for optimizing performance of an
incremental web crawler. Proceedings of the 10thrimational conference on World Wide Web. ACM, 2001
DOI:10.1145/371920.371960

Olston, Christopher, and Marc Najork. Web crawlifgundations and Trends in Information Retrieval @0
(3): 175-246. DOI:10.1561/1500000017

Castillo, Carlos. Effective Web Crawling. Ph.D. 4lee(2004).

Najork, Marc, and Janet L. Wiener. Breadth-firsawling yields high-quality pages. Proceedings & flOth
international conference on World Wide Web. ACMQ20DO0I:10.1145/371920.371965

Pinkerton, Brian. Finding what people want. Expeces with the WebCrawler. Proceedings of the Second
International World Wide Web Conference. Vol. 9894.

Impact Factor (JCC): 4.6723 NAAS Ratj 1.89

Focused Web Crawler Development Challenges: Eccraed 33

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Cho, Junghoo, Hector Garcia-Molina, and LawrenaggePEfficient crawling through URL ordering. (1998)

Cho, Junghoo, and Hector Garcia-Molina. Effectiagg@refresh policies for web crawlers. ACM Tranisas on
Database Systems (TODS) 28.4 (2003): 390-426. MAI145/958942.958945

Cho, Junghoo, and Uri Schonfeld. Rankmass cravadecrawler with high personalized pagerank coverage
guarantee. Proceedings of the 33rd internationalecence on Very large data bases. VLDB EndownRaay.

Abiteboul, Serge, Mihai Preda, and Gregory Cobdwaptive on-line page importance computation. Pedoggs
of the 12th international conference on World Wileb. ACM, 2003. DOI:10.1145/775152.775192

Baeza-Yates, Ricardo, et al. Crawling a countrytebestrategies than breadth-first for web pagend. Special
interest tracks and posters of the 14th internatiooonference on World Wide Web. ACM, 2005.
DOI:10.1145/1062745.1062768

Chien, Steve, et al. Link evolution: Analysis antjosithms. Internet mathematics 1.3 (2004): 277:304
DO0I:10.1080/15427951.2004.10129090

Cho, Junghoo, and Hector Garcia-Molina. "The Evotutof the Web and Implications for an Incremental
Crawler." In Proceedings of the 26th InternatioGahference on Very Large Data Bases, pp. 200-2@8gah

Kaufmann Publishers Inc., 2000.
Kushmerick, Nicholas. Wrapper induction for infotioa extraction. Diss. University of Washington 979

Doorenbos, Robert B., Oren Etzioni, and Daniel RIdVA scalable comparison-shopping agent for thedy
wide web. Proceedings of the first internationalnfeoence on Autonomous agents. ACM, 1997.
DOI:10.1145/267658.267666

Yang, Jaeyoung, et al. A More Scalable CompariSioopping Agent. In Proc'EIS2000 Engineering oflligtent
Systems. 2000.

www.iaset.us edit@iaset.us

